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We study the two-impurity Kondo model (TIKM) in two dimensions with spin-orbit coupled conduction
electrons. In the first part of the paper we analyze how spin-orbit interactions of Rashba as well as Dresselhaus
type influence the Kondo and Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions in the TIKM, general-
izing results obtained by H. Imamura et al. [Phys. Rev. B 69, 121303(R) (2004)] and J. Malecki [J. Stat. Phys.
129, 741 (2007)]. Using our findings we then explore the effect from spin-orbit interactions on the non-Fermi-
liquid quantum critical transition between the RKKY-singlet and Kondo-screened RKKY-triplet states. We
argue that spin-orbit interactions under certain conditions produce a line of critical points exhibiting the same
leading scaling behavior as that of the ordinary TIKM. In the second part of the paper we shift focus and turn
to the question of how spin-orbit interactions affect the entanglement between two localized RKKY-coupled
spins in the parameter regime where the competition from the direct Kondo interaction can be neglected. Using
data for a device with two spinful quantum dots patterned in a gated InAs heterostructure we show that a
gate-controlled spin-orbit interaction may drive a maximally entangled state to one with vanishing entangle-
ment or vice versa (as measured by the concurrence). This has important implications for proposals using

RKKY interactions for nonlocal control of qubit entanglement in semiconductor heterostructures.
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I. INTRODUCTION

The study of few-electron quantum dots, or so-called ar-
tificial atoms,' has grown into a major field of research, fu-
eled by the promise of future technological applications, as
well as by problems in fundamental physics. Unlike an ordi-
nary atom, the properties of a quantum dot can be manipu-
lated by electrical gates, allowing for well-controlled studies
of a whole spectrum of single- and many-particle phenom-
ena, including one-2 and two-channel® Kondo effects, Cou-
lomb blockade,* and Pauli spin blockade effects.’ Recently,
nanoscale devices with two spinful quantum dots connected
to a conducting region have become the focus of interest,
following the breakthrough experiment by Craig et al.® (see
also Refs. 7 and 8). When the dots carry spin-1/2 magnetic
moments, the problem is that of the two-impurity Kondo
model (TTKM).?

In this model, two localized spins S, of magnitude §
=1/2 are coupled to a sea of conduction electrons via a spin
exchange,

H=Hkin+JSI'0-1+JSZ'0-2' (1)

Here o-izz//m(xi)rgz//ﬁ(xi) are the electronic spin densities at
the sites of the localized spins (with 7 the vector of Pauli
matrices), J is the spin-exchange coupling, and H,;, is the
kinetic energy of the electrons. To second order in J, the
conduction electrons mediate a spin-exchange interaction be-
tween the two localized spins, the Ruderman-Kittel-Kasuya-
Yoshida (RKKY) interaction'”

Hgpxxy=K(R)S; - S,, (2)

where the strength and the sign of the coupling K(R) depends
on the distance R between the spins. The competition be-
tween the RKKY interaction in Eq. (2) and the direct Kondo
spin exchange in Eq. (1) is governed by the ratio of K(R) to
the Kondo temperature Tx~ D exp(—1/2pgJ), where pg is
the single-electron density of states at the Fermi level. When
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|K(R)|>Tg, the RKKY interaction dominates the direct
Kondo exchange and will lock the two-impurity spins into a
singlet [for K(R)>0] or a triplet state [for K(R) <0]. In the
experiment by Craig er al.,® the system consisted of two
spinful quantum dots in a gated GaAs/AlGaAs heterostruc-
ture, coupled to an open conducting region. When tuning the
coupling K(R) between the dots, the Kondo signature of the
conductance across one of the dots was seen to vanish or
become strongly suppressed, indicating that the RKKY inter-
action between the dots dominates the Kondo interaction,
forming either a singlet state with no Kondo effect or a
screened triplet state with a much weaker Kondo effect.!’?

When the strength of the RKKY interaction becomes
comparable to the Kondo temperature, |K(R)|~ T, there is a
crossover between the antiferromagnetic RKKY regime (“lo-
cal singlet”) and the regime where the triplet impurity state is
Kondo screened (“Kondo singlet”).!3 If the system possesses
particle-hole symmetry, the crossover is expected to sharpen
into a second-order phase transition, controlled by a non-
Fermi-liquid fixed point.'* However, since this symmetry re-
quires a high degree of fine tuning, the possibility to observe
the corresponding quantum critical state was for a long-time
judged as rather unrealistic. However, in recent work by
Zarand et al.'® it was shown that the critical state can be
stabilized against particle-hole symmetry breaking by using a
device where the two dots are connected to two separate
leads and RKKY-coupled via a magnetic insulator.

In a variation to the proposal by Zarand et al.,'’> we here
consider a device scheme where the RKKY coupling is me-
diated by a Coulomb blockaded auxiliary electron reservoir
(see Fig. 2). This is the same type of device that was studied
in Ref. 16, with focus on effects from charge fluctuations
between leads and dots. This alternative type of setup also
allows for the study of effects from spin-orbit interactions on
the critical behavior of the TIKM. This is the main theme of
the present paper. As we shall see, the presence of spin-orbit
interactions adds a twist to the problem with some quite
interesting repercussions. Specifically, we shall argue that
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spin-orbit effects under certain conditions produce a line of
critical points, exhibiting the same scaling behavior as that
of the critical TIKM without spin-orbit interactions (up to
renormalization group (RG) irrelevant scaling corrections).

The role of spin-orbit interactions in the TIKM is also of
interest away from criticality, considering proposals for ex-
ploiting devices with RKKY-coupled quantum dots in spin-
tronics, with possible applications for future quantum com-
puting. In its most basic implementation, a quantum dot
carrying spin 1/2 is here used to represent a qubit, built from
its two-spin states |1),| ] ).!”!® A key problem is that of con-
necting the qubits in such a way that their coupling and
entanglement become controllable.! In the original proposal
by Loss and DiVincenzo,!” the spin qubits are coupled by a
Heisenberg exchange, produced by a tunable electrostatic
barrier between neighboring dots. For the purpose of compu-
tation, however, one must be able to achieve fast and effi-
cient control also of the coupling between electron spins on
distant quantum dots. A major step toward this goal was
taken by Craig et al.® in their experimental realization of the
TIKM. As shown in the experiment, the coupling K(R) can
be turned on and off by the electrical gates that control the
energy levels of the dots, thus making possible a realization
of a nonlocal two-qubit logic gate.’” While there are other
competing schemes for achieving nonlocal coupling of spin
qubits, based on optical?' or magnetic?? control, the RKKY-
mediated two-qubit gate has its distinctive advantage in be-
ing a simple and easily scalable implementation. An estimate
by Rikitake and Imamura?? shows the two-qubit decoherence
time (set by the electronic environment that mediates the
RKKY interaction) to be well within the bounds for efficient
gate operations.

In this context, a central question is to understand how
robust the RKKY coupling is against competing interactions.
In recent work by Cho and McKenzie** it was shown that the
entanglement between two RKKY-coupled spin qubits (as
measured by the concurrence®) needs a minimum nonzero
antiferromagnetic correlation determined by the competition
between the RKKY interaction and the Kondo effect. In the
second part of this paper we take the Cho-McKenzie
analysis®* (see also Ref. 26) a step further by including the
additional effect from spin-orbit interactions. A spin-orbit in-
teraction mixes spin and charge and is known to be an in-
sidious source of decoherence in spin-qubit devices.?” At the
same time, it is possible that one could in fact exploit spin-
orbit interactions for coherent control of qubit interactions,
as proposed recently by several groups.”® We here address
the separate issue of how the presence of spin-orbit interac-
tions influence the RKKY coupling and the entanglement
between two-spin qubits. As we shall see, while the effect
may be dramatic, it can be compensated for by properly tun-
ing the electrical gates that define the device and does not per
se obstruct the operation of an RKKY-mediated two-qubit
gate.

The rest of the paper is organized as follows: In Sec. II we
review how to derive a modified RKKY interaction in the
presence of a spin-orbit interaction of Rashba type.?” The
analysis can easily be extended to a spin-orbit interaction of
Dresselhaus type and we carry it out in parallel. The magni-
tude and sign of the modified RKKY interaction is seen to be
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FIG. 1. (Color online) The physical system that we study in this
section. The different V are tunneling rates. The dots are operated in
the Coulomb blockade regime, where charge transfer between the
dots and the central reservoir are suppressed.

strongly sensitive to the strength of the Rashba and Dressel-
haus interactions, as encoded in the so-called « and B
coefficients,?® with important implications for the design of a
spin-qubit device. In Sec. III we then turn to a study of how
the Kondo interaction is influenced by spin-orbit interactions
of both Rashba and Dresselhaus type, capitalizing on recent
work by Malecki.’! In Sec. IV we use our results from the
previous sections to study the effect of the spin-orbit inter-
action on the quantum phase transition between the RKKY
(local singlet) and Kondo-screened regimes. In the case
when charge fluctuations are present we show that the spin-
orbit interaction generates a line of fixed points (in the lan-
guage of the renormalization group) and we provide argu-
ments for its interpretation. We also argue—on basis of
symmetry arguments—that spin-orbit effects under certain
conditions produce a line of critical points (unrelated to the
line of fixed points just mentioned), producing the same
leading scaling behavior as that of the critical TIKM without
spin-orbit interactions. In Sec. V we change focus and ex-
plore how spin-orbit interactions influence the entanglement
of two RKKY-coupled spin qubits (in the parameter regime
where the direct Kondo exchange can be neglected). As a
preamble we derive a general expression for the reduced
density matrix and the concurrence for two-spin qubits with
U(1) symmetry, as appropriate for the present problem where
the addition of spin-orbit interactions breaks the SU(2) sym-
metry of the standard TIKM down to U(1). Section VI con-
tains a brief analysis of the behavior of the two-qubit con-
currence at criticality and in Sec. VII, finally, we summarize
our results.

II. RKKY INTERACTION IN THE PRESENCE OF SPIN-
ORBIT INTERACTIONS

In the following we consider a realization of the TIKM in
a nanoscale device where two spinful quantum dots are con-
nected via tunnel junctions to a large central electron reser-
voir. The proposed device, which may be manufactured us-
ing a gated semiconducting heterostructure, is depicted in
Fig. 1. The two dots are coupled to the reservoir via point
contacts, allowing the electrons to tunnel between dot i and
the reservoir with amplitude V, ;. The dots are operated in
the Coulomb blockade regime where transfer of charge be-
tween the dots and the reservoir is strongly suppressed but
virtual fluctuations give rise to a spin-exchange (Kondo) in-
teraction between the electrons trapped on the dots and the
conduction electrons in the reservoir, as described by Hamil-
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tonian (1). With V, =V, ,, the Kondo couplings to the dots
are equal and given by J~ V/ZU/ U, where U is the Coulomb
blockade energy of the reservoir. As discussed in the intro-
duction, there exists a parameter regime where the antiferro-
magnetic RKKY interaction in Eq. (2), generated by second-
order Kondo exchanges, becomes dominant. As shown in
Ref. 24, a strong enough antiferromagnetic interaction leads
to a finite (in fact, maximal) entanglement between qubits
(spins on the dots) as required for a working quantum infor-
mation device.

We here focus on effects on the RKKY interaction from
the spin-orbit coupled electrons in the large central reservoir.
One may also enquire about the effect from the spin-orbit
coupling of the electrons that reside in the quantum dots 1
and 2 (cf. Fig. 1). While an interesting issue as such, we shall
here bypass it by considering the idealized limit of two ultr-
asmall spinful quantum dots, with the trapped electrons mod-
eled as two completely localized spin-1/2 impurities. In this
limit only the spin-orbit coupling of the itinerant electrons in
the large reservoir is to be taken into account.

Spin-orbit interactions in semiconductor heterostructures
come in two guises, the Dresselhaus®? and Rashba® interac-
tions, originating from the inversion asymmetry of the poten-
tial V(r)=V,(r)+V'(r), where V,.(r) is the periodic crystal
potential and V’(r) is the potential due to confinement, im-
purities, external electric fields, etc. The electric field =V V(r)
produces a Pauli spin-orbit interaction

Hgo~[p X VV(r)] - o (3)

that can be of sizable magnitude due to the large potential
gradients of the atomic cores.’’ Here o=(0",0”,0%) is the
vector of Pauli matrices. If V(r) lacks inversion symmetry,
i.e., V(-r) # V(r), then the Pauli interaction in Eq. (3) fails to
average to zero in a unit cell and results in a spin splitting of
the electronic bands. In semiconductors with bulk-inversion
asymmetry (zinc-blende structures, including GaAs) the spin
splitting can be encoded in the effective Dresselhaus
interaction®?

HDress. =B E kl(ka - k%)o'l, (4)
i#j#L

where k;, k;, and k, are the electronic wave numbers along
the principal crystal axes, with (i,/,€) cyclic permutations of
(x,y,z), and where B is a material dependent coupling con-
stant. For a heterostructure grown along [001], with the elec-
trons confined to the xy plane, the Dresselhaus interaction
reduces to

Hg= k0" ~ kyo") (5)

when taking the average of Eq. (4) along the z direction:
(k,)=0 and (kf)~(7'r/ d)* with d the characteristic electron
wavelength in the z direction. Here S is the Dresselhaus
coefficient, B=—B(w/d)>.

In a heterostructure, the spin degeneracy can be lifted also
because of a structure inversion asymmetry of the confining
potential contained in V'(r). This potential may obtain con-
tributions also from an externally applied potential as well as
from the effective potential from the position-dependent
band edges. Assuming that —VV’(r) is an electric field along

PHYSICAL REVIEW B 80, 155302 (2009)

the z direction, one obtains from Eq. (3) the Rashba
interaction®3

H,= alk,o’ - ko), (6)

where the Rashba coefficient a can be tuned via an external
gate.>3 It may be worth pointing out that the spin-orbit
interaction comes in two distinct varieties also in other ma-
terials. For example, in graphene, a Rashba interaction [Eq.
(6)] controllable via an external gate electric field coexists
with an intrinsic spin-orbit interaction determined by the
symmetry properties of the honeycomb lattice, similar to the
two-dimensional (2D) Dresselhaus interaction [Eq. (5)] in a
semiconductor heterostructure.’® In the following we focus
entirely on effects produced by Hg and H,,, as defined in Egs.
(5) and (6), respectively.

Turning to the RKKY interaction, it here acts between
two localized spins S, in a 2D electron gas, where, in the
device in Fig. 1, S; is attached to dot i(i=1,2) and the elec-
tron gas is represented by the central reservoir. It can be
calculated in second order in the Kondo couplings J, , as?

JJ “F
Hyxxy =— flm f do Tr[ (S, - 0)G(R,w + i0,)

X (S, 0)G(- R, w+i0,)] (7)

with wp the Fermi level. Here G(R,w) is the Green’s func-
tion of a conduction electron with energy w, with 2R the
distance between the localized spins [~ the width of the
central reservoir in Fig. 1]. The trace is taken over the two-
spin states of a conduction electron. The expression in Eq.
(7) can easily be adapted to the case when spin-orbit inter-
actions are present by properly modifying the single-electron
Greens function G. The case of a pure Rashba spin-orbit
interaction was treated in Ref. 29. Here we will show that
using a similar procedure as in Ref. 29, the form of the
RKKY interaction can be calculated in the presence of both
Rashba and Dresselhaus interactions of arbitrary relative
strength.

For this purpose it is convenient to write the 2D single-
electron Hamiltonian with both kinds of spin-orbit interac-
tions [cf. Egs. (5) and (6)] as

2 —a 2
H:k—+{<'8 )(kx>}-75k—+(Ak)-T, (8)
2m a =B/ \ky 2m

where a and S are the coupling strengths for Rashba and
Dresselhaus spin-orbit interactions, respectively.3>33 All vec-
tors that appear in Eq. (8) have two components, i.e., k
=(k,,ky) and 7=(7°,7). The scalar product of any vector
m=(m,,m,) with the vector of Pauli matrices 7 is taken in
the usual way, m-7=m, 7 +m,7. The Green’s function cor-
responding to the Hamiltonian in Eq. (8) is

k2 -1
Glk,w)=[w-HK)] "= [a)— o (Ak) - 7}
=Gylk,w;A) + G (k,w;A\)(Ak) - 7, 9)

where
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k2
- —
2m
GO(k’w;A)= k2 2 s
-—] = (Ak)?
(o= ) - an
1
G (k,w;A) = (10)

(w_2m> - (Ak)

Note that both G and G are invariant under the transforma-
tion k——k. The Green’s function in real space is obtained
via a Fourier transform, where the spin dependence can be
pulled in front of the integral by writing

(Ak)e*R = — j(AV)eFR = (Aﬁ)<_ iﬁeik'R) (11)

with R=R/|R|. We thus obtain
GR,w;A) = Gy(R,w:;A) + G,(R,w;A)(AR) - 7, (12)

where

i d .
RwA)=—-— 21— ik-R “A). 1
Gl( NON ) 4W2f32d kd|R|e Gl(k,(l), ) ( 3)

Both Gy(R) and G,(R) are invariant under the parity trans-
formation R — —R. It is a straightforward task to perform the
traces over the Pauli matrices in Eq. (7) (for details, see
Appendix A) and by specifying a coordinate system where
R=% one obtains from Eq. (7) to Eq. (13) the RKKY inter-
action in presence of Rashba and Dresselhaus spin-orbit in-
teractions,

SO
HRKKY = HHeis. + HRashba + HDress. + HinterfA s (14)

where
Hyeis. = FoS1 - S5,

HRashba = aF (S, X Sz)y + a'zFZS{Sy’

Hpyegs. = BFI(SI X S2)x+ BzFZS)lc )2C’
Hiyer, = aBFZ(S)ICSE + S)IS;) . (15)
Here F;=F,(a,B,R) are functions which in the general case
are given by rather complicated integrals. For the case where

only one type of spin-orbit interaction is present, they have
been obtained analytically in the limit of large distances

2
kpR>1 and weak spin-orbit interaction a, < %kF.zg One
finds that

S om? , m’a?
FO(O,a,R)=F0(a,O,R)=—mﬁsmﬂe kp+ P

Fy(0,a,R) . 2mRa
sin ,
ﬁZ

Fy(0,a,R 2mR
FZ(O,a,R)=F2(a,O,R)=0(—;¥)<1—cos%). (16)
a

F,(0,a,R) =F;(a,0,R) =

Note that we pulled the a— 0 asymptotics out in Eq. (15),
i.e., the functions F; are finite for «=0. For @ and S both
nonzero, the integrals must be treated numerically.
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The form of the interaction Hamiltonian in Eq. (14) (ob-

tained by choosing a coordinate system where Ié:)?) is con-
venient for reading off the various special cases of an RKKY
interaction with no spin-orbit effects included (Hyis), the
contribution from a pure Rashba interaction (Hgggba), the
contribution from a pure Dresselhaus interaction (Hpyeg ), as
well as the contribution to RKKY coming from the interfer-
ence between the latter two when these are simultaneously
present (Hiyerr). While these expressions are suggestive for
physical interpretations there is actually a more useful choice
of coordinate system, obtained by choosing the angle be-

tween R and § equal to —arctan(a/B). With this choice AR
=0a[0,(a*-%)cos arctan(a/B)] and only 7 appears in the
Green’s function. The interaction then takes the simpler form

Hrggy = KuS1 - 85+ KigingS185 + Kpu(S) X 85)”. (17)

The three terms in Eq. (17) can be identified with the Heisen-
berg, Ising, and Dzyaloshinsky-Moriya’’-® interactions, re-
spectively. Their coefficients Ky, Kigne, Kpy depend on the
distance between the two spins, the Kondo couplings J; , and
the spin-orbit couplings a and B. Since Hgzggy in Eq. (17)
manifestly conserves U(1) spin symmetry (spin rotations
around the y axis), Eq. (17) is easier to work with than the
expression in Eq. (15), where it is less obvious how to ex-
ploit the U(1) symmetry. It is here notable that the structure
of the interaction in Eq. (17) is the same as that obtained for
a pure Rashba spin-orbit interactions in Ref. 29. In particular,
the interference between the two types of spin-orbit interac-
tions (Hiyerr) in Eq. (15) does not produce a new structure in
Eq. (17). On the other hand, the parameters Ky, Kiging> Kpm
do depend differently on R, «, and (8 in the general case. It is
also worth pointing out that the special case |a|=|8| gives

AR=0, which means that only the Heisenberg term ~S-S,
appears in the RKKY interaction, like in the absence of any
spin-orbit interaction. The restoration of the SU(2) symme-
try for equal strengths of the Rashba and Dresselhaus cou-
plings has been noted earlier’® and predicted to give rise to a
persistent spin helix (PSH), a helical spin-density wave of
infinite lifetime. The emergence of a PSH was subsequently
reported in an experiment on GaAs quantum wells.*0

In the following we will find it useful to express the
RKKY interaction in terms of the parameters KYE%(KH
+Kiging) and 'K =Ky +iKpy as

i
Hyixy = K'S)S5 + EelﬁKi(si +iS7)(S5 - iS3) + Hec.

(18)

Equivalently, we can express Higgy in terms of a rotated
second spin,

83 = ¢#28,¢71%%, (19)

in which case the RKKY interaction becomes®

HRKKY=KLSI . Sé+ (K)’_KL)S}]SQ,V (20)

Note that in the special case of Eq. (16) with only Rashba or
Dresselhaus interaction present, the coefficient of the second
term in Eq. (20) vanishes and the RKKY interaction in terms
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Vi Vaa Va2 Vi
[OXSl0
Central
reservoir
Lead 1 Lead 2

FIG. 2. (Color online) The physical system that allows for a
study of the nontrivial fixed point of the TIKM. The different V are
tunneling rates. The dots are operated in the Coulomb blockade
regime, where charge transfer between the reservoir and dots as
well as between the leads and the dots is strongly suppressed.

of a rotated second spin is purely of the Heisenberg type. For
our purposes, the RKKY interaction in the forms of Egs. (18)
and (20) are most suitable and will be used in the following.

III. KONDO EFFECT WITH SPIN-ORBIT
INTERACTIONS

Having analyzed the effect of spin-orbit interactions on
the RKKY coupling between the two localized spins we must
now try to understand how spin-orbit interactions influence
the Kondo interaction per se. The case of Rashba interaction
was recently investigated in Ref. 31 and we here extend the
analysis to include also the Dresselhaus interaction. Since the
nontrivial fixed point of the TIKM is unstable against various
perturbations (in the language of the renormalization group),
we propose a slight modification of the setup that we have
discussed so far. The modified setup is depicted in Fig. 2 and
has the property that it protects the fixed point.'® In the ab-
sence of spin-orbit effects, and with the spinful dots operated
in the Coulomb blockade regime (so as to suppress charge
transfer between dots and leads, as well as between the dots
and the reservoir), we can write the effective low-energy
Hamiltonian of the device as

Hszin+JS1'0'1+JSZ'0'2+K(R)S1'S2. (21)

Here o’,-=¢j“(x,-)1"§¢ﬁ,-(xi) is the electronic spin density in
lead i (i=1,2, with 7 the vector of Pauli matrices). The
Kondo coupling J is generated to second order in the tunnel-
ing rates, here assumed to be equal, J~ V%/ U, with U, the
charging energy of the dots. Note that whereas in Eq. (1) the
spin densities of the electrons in the central reservoir were
coupled to both spins, here the spin densities in lead i couple
only to the spin i. In effect, we have two single-impurity
Kondo models coupled via the RKKY interaction K(R)S;-S,
between the impurity spins. The size of the RKKY coupling
K(R) is assumed to be much larger than the Kondo tempera-
ture of the reservoir, hence the direct Kondo spin exchanges
between the localized electrons on the dots and the electrons
in the reservoir have been neglected in Eq. (21). For more
details on this, see Refs. 15 and 16.

To find out about the interplay of Kondo, RKKY, and
spin-orbit effects, let us begin by writing down the single-
impurity Kondo model in two spatial dimensions (x,y) with
an added spin-orbit interaction,
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FIG. 3. (Color online) The Kondo interaction as well as both
kinds of spin-orbit interactions only couple electron fields with cer-
tain quantum numbers, as depicted here. In particular, one sees that
spin-orbit couplings preserve a pseudospin & with the values o=,
say, for the fields on the left-hand side and o'=1 for the ones on the
right-hand side. Note that the Kondo interaction only couples fields
of different pseudospin.

H= f ke P o+ f &’k f K G Yy 1+ S

+ J d’k f k' kol H k', 0" Y s o (22)

where [cf. Egs. (5) and (6)]
H,,=(ak,— ,Bky) 7+ (Bk, - aky)'rx. (23)

Here |k,o)=y;°|0) are momentum eigenstates with o the
spin z component and 7 are the Pauli matrices. As before, a
and B are the couplings for the Rashba and Dresselhaus spin-
orbit interactions, respectively, and we assume a spherically
symmetric free-electron dispersion ¢.

The single-impurity Kondo model in the presence of only
Rashba spin-orbit interaction (8=0) was studied in Ref. 31
where it was found that the qualitative low-energy properties
of the model are unchanged by the added interaction. This
can be seen by writing the Kondo model with spin-orbit
interactions in the form of a two-channel Kondo model,
where the different channels of electrons have different cou-
plings to the impurity spin. The spin-orbit interaction in this
case is absorbed into the kinetic and Kondo terms of the
Hamiltonian and no longer appear explicitly. It is straightfor-
ward to apply the same procedure to the Dresselhaus inter-
action.

As usual it is convenient to expand the electron fields in
partial waves around the impurity site, which we here choose
to be R=0. Only the m=0 fields participate in the Kondo
interaction (m e 7 being the orbital quantum number), with
the kinetic energy being diagonal in m. As shown in Appen-
dix C, the Dresselhaus- and Rashba-type interactions both
couple each field to exactly one other field, i.e., a field la-
beled by m gets connected to a field with either m+1 or m
—1. This simplifies the picture considerably, as can be ascer-
tained by the help of Fig. 3.
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Since there are no couplings in the kinetic or spin-orbit
terms between fields on the left-hand side and right-hand
side of the diagram in Fig. 3, it is possible to choose a basis
of simultaneous eigenstates of the kinetic and spin-orbit
Hamiltonian, where each state is a linear combination of
states from only the left- or right-hand side of the diagram
but not from both. For nonzero spin-orbit couplings, each of
those fields contains one of the m=0 fields and thus couples
to the impurity spin. If both kinds of spin-orbit interactions
are present, there is an infinite number of fields coupling to
the impurity. Unless there is some other mechanism that
truncates the angular momentum states that may appear, it is
not easy to make a statement about the resulting physics. In
fact, an infinite number of fields coupling to the impurity is a
similar situation as one would obtain for a long-range Kondo
interaction in the absence of spin-orbit couplings.

As long as only one of the spin-orbit interactions is
present, the Hamiltonian of Eq. (22) can be rewritten as

H=2 | dEEY 5
f.o

1 i
+5 f dE f dE' 2 J; o (E.EV% dpr o 5 S, (24)
rf

where f=* is a flavor index and o= | ,7 is an SU(2) pseu-
dospin 1/2 of the electron fields, corresponding to the left-
and right-hand sides of Fig. 3, respectively. The electrons are
here expressed in terms of the energy E (for technical details
see Appendix C). This model is known as the (anisotropic)
two-channel Kondo model.*! In general, the Jyp(E,E') in-
teraction is neither diagonal nor has degenerate eigenvalues.
A nondegenerate interaction (whether diagonal or not) is
known to drive the two-channel Kondo model toward the
single-channel Kondo model (plus one channel of free elec-
trons) under renormalization.*! The physical explanation for
this is that if one channel of electrons couples more strongly
to the impurity than the other, screening is fully achieved by
that channel in the low-temperature limit. In this case, the
other channel decouples and behaves like one of free elec-
trons. Therefore, the effective low-energy model describing
single-channel Kondo exchange in the presence of spin-orbit
interaction of either Dresselhaus or Rashba type, is the usual
single-channel Kondo model (without any further interac-
tion), plus a channel of free electrons which decouples and
may thus be dropped.

The same argument can be applied to the TIKM. Physi-
cally, this is easiest to understand in terms of the nanoscale
device introduced in the beginning of the section. Here, the
TIKM is understood as two single-impurity models, coupled
only via the RKKY interaction. In this picture it is clear that
spin-orbit effects should not change the critical behavior.
One can, for instance, start with two decoupled single-
impurity models, each of which flows to the single-channel
fixed point. Then one adds the RKKY coupling, which does
not affect how the leads couple to the impurities.*> The
TIKM in the presence of either type of spin-orbit interac-
tions, which is equivalent to an anisotropic two-channel
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TIKM, can therefore still be described by the Hamiltonian in
Eq. (21) as far as the low-energy behavior is concerned.

IV. CRITICALITY IN THE PRESENCE OF SPIN-ORBIT
INTERACTIONS

Before discussing the effects of spin-orbit interactions at
criticality of the TIKM, let us briefly review the most impor-
tant results for the case when no spin-orbit interactions are
present. In this case, an unstable fixed point has been found
to exist for a particular value of the parameters, i.e., K
~2.2T¢.* At this fixed point the impurity spins form a de-
generate doublet between the antiferromagnetic singlet state
|[+=)—|—+) and one of the triplet states |++)+|——),** where
we label all states in terms of eigenstates of the y component
of the spin operators, i.e., $]| =)=+ 3| %), i=1,2. In gen-
eral, the fixed point is unstable against breaking of particle-
hole or parity symmetry.'* If charge transfer between the
dots is suppressed, the breaking of those symmetries become
irrelevant.'> Even with charge transfer present, breaking the
spin SU(2) down to U(1) with an Ising-type interaction
~S885 produces only irrelevant operators while a
Dzyaloshinsky-Moriya-type interaction allows a marginal
operator.*> The Dzyaloshinsky-Moriya interaction is not in-
variant under discrete rotations of 7 around the x or y axis,
thus this operator may appear in that case.

With this, the stage is set to treat spin-orbit interactions
around the fixed point. Since spin-orbit effects give rise to a
two-channel model, which in turn renormalizes to a single-
channel model and the RKKY interaction changes as derived
in Sec. II, the effective Hamiltonian can be written as

HZHkin'l-JSl‘ 0'1+JS2‘ (1)

1
+K'SYS5 + Eel"Ki(Sﬁ +iS7)(S5 - iS3) + Hec.

~ s

Hrkky (25)

As pointed out above, the Kondo-screening behavior is not
affected qualitatively; under renormalization the system
flows to the same fixed point as without spin-orbit interac-
tions. What may change is the value of the Kondo tempera-
ture Tx.>! Since small deviations around the critical value of
K=K!t=K"=~22Ty are relevant, changing the Kondo tem-
perature while keeping everything else fixed may drive the
system away from the critical point.*® To keep the system at
the fixed point it may therefore be necessary to fine tune the
interactions, which is, in principle, possible in the proposed
nanoscale device. From here on, we assume any changes in
Tk to be compensated by modifying K accordingly. The only
way how spin-orbit interactions can then influence the criti-
cal behavior is by the symmetry-breaking SU(2) —U(1), by
which new operators may appear. In terms of the RKKY
interaction in Eq. (18), both (K*#K*, 6=0) and (6
#0, K'=K*) break SU(2) down to U(1). We will refer to
the former as a longitudinal anisotropy while we call the
latter a transversal anisotropy. As we shall see, the effect of
this symmetry breaking depends on the presence of charge
transfer between the two channels of conduction electrons.*’
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There are various cases to consider. We begin with the sim-
plest case of purely transversal perturbations.

A. Transversal anisotropies without charge transfer

If K*=K” the RKKY interaction of Eq. (20) takes the
simple form

Hggky = KS; 'Sé- (26)

We rotate the spins of the conduction electrons coupled to
the second impurity spin to match the rotation of the impu-

rity spin [Eq. (19)]

Y=y, (27)

The kinetic energy is invariant under these transformations,
as are S; and ¢,. It follows that the Hamiltonian takes the
form

H=Hkin+K(R)Sl'S£+JS1‘O'1+JS5'0'£. (28)

Without the primes this is precisely the same Hamiltonian as
for the original (isotropic) TIKM [cf. Eq. (21)]. This result
does not mean that changing 6 is an irrelevant perturbation
under which the system flows back to the isotropic fixed
point. Instead, the fixed points for all values of @ should be
identified since they arise from the same Hamiltonian. It
should be clear that a charge-transfer term ~¢{¢2 is not
invariant under this transformation, indicating that something
different may happen in that case. We will return to this issue
later, after considering the case of purely longitudinal
anisotropies. Before proceeding, it may be worth noticing
that only the singlet state is affected by the transformation
above, turning it into |+—>—%|—+). It is easy to verify that
this gives the expected spin-spin expectation value of
(S -Sé):—i. In the original basis this means that the unro-
tated spin-spin expectation value can take any value between
—i and +i.

B. Longitudinal anisotropies with or without charge transfer

If K¥# K* and #=0, the Hamiltonian cannot simply be
reduced to the isotropic one, even in the absence of charge
transfer between the two leads. However, this perturbation is
known to be irrelevant from the boundary conformal field
theory (BCFT) solution in Ref. 14, even in the presence of
charge transfer. In fact, breaking SU(2) to U(1) in this way
does not produce a new leading irrelevant operator either,
which means that for longitudinal anisotropies the system
flows back to the isotropic fixed point under renormalization
and the scaling behavior of thermodynamic quantities is un-
affected. It should be noted that despite of this, changing K”
while keeping K+ constant is a relevant perturbation. This is
due to the fact that the shift (K,K)—(K'+8,K'+0),
where ¢ is some small number, drives the system away from
the fixed point K+=K"=~22Ty, and is hence a relevant
perturbation.*® In the linearized renormalization-group flow
around the fixed point, this means that the irrelevant direc-
tion must be perpendicular to this. Only K*,K*—K*
+6,K’= 8 can be irrelevant, i.e., K+ and K° need to be
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changed judiciously in order for the system to remain at the
fixed point.

C. Both longitudinal and transversal anisotropies, no
charge transfer

As long as there is no charge transfer between the leads,
the two previous results can be easily combined to determine
what happens when both longitudinal and transversal
anisotropies are present: By the unitary transformation, the
Hamiltonian of such a system reduces to a Hamiltonian
where there are only longitudinal anisotropies present. These
are irrelevant as noted in the previous case.

D. Both longitudinal and transversal anisotropies as well as
charge transfer

As pointed out before, the presence of charge transfer
disallows the unitary transformation that we used in the pre-
vious cases. Exploiting the BCFT solution in Ref. 14, we
find that an exactly marginal operator (h,h,¢” in the BCFT
language) is allowed when both transversal anisotropies and
charge transfer are present. The isospin component %k, of
this operator is only allowed when the charges of the two
channels are not separately conserved. The spin component
¢ is allowed if the spin symmetry is broken down to U(1)
and the symmetry under discrete rotations by an angle
around the x axis and the z axis is broken as well. This is
only the case if ##0, i.e., in the presence of transversal
anisotropies. A charge-transfer term between the two leads
~¢T U+ 1@(&1, along with the Kondo coupling between the
impurity spins and the leads gives rise to an additional
RKKY interaction between the two-impurity spins, on top of
the interaction mediated by the central reservoir. The mar-
ginal operator does not drive the system away from critical-
ity, i.e., the RKKY couplings K* and K* are unchanged
(changes in their values are either relevant or irrelevant, see
Fig. 4). Instead, we expect the phase 6 to be replaced by an
effective phase 6., made up of contributions by 6 and by the
coupling to the charge-transfer terms, which appears as J_ in
14. This is consistent with the fact that the marginal operator
is allowed only for #+ 0. The models for different values of
0 can therefore no longer be identified as before. This sug-
gests that there is now instead a line of fixed points param-
etrized by 6.4 and connected via the marginal operator.

E. Further away from the critical point

It should be kept in mind that the notion of an operator
being irrelevant only carries meaning in the neighborhood of
a fixed point. For larger differences between K and K* the
situation may be very different. In fact, for K+ =0 an entirely
different quantum phase transition is expected to occur at a
particular value of K*.*® On the other hand, for K* >0 and
general K¥ <0, the situation is very much the same as for
K+=K: For sufficiently large values of K*, the impurities
form an RKKY singlet while for K* <-K” the system enters
a phase where the two-impurity spins are locked in an S=1
state and get screened by two effective channels of conduc-
tion electrons.*! This suggests that for any given K*<O0,
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FIG. 4. (Color online) Qualitative RG flow of the anisotropic
model. The solid dots and the solid line are known results for the
isotropic model (Ref. 43). The gray area marks the system close to
a different model of quantum dots coupled via an Ising interaction
where different behavior is expected (Ref. 48) The dashed line
which we argue for in the text separates the RKKY singlet from the
Kondo-screened regime. As an artifact of the scale at |K|— it
appears curved to coincide with the screened fixed point (K*=
—K”). Note that at both the singlet and the screened fixed point, the
direction along the semicircle is irrelevant. We thus expect there to
remain a finite separation (its scale being set by Tx) between the
relevant flow toward the screened fixed point and the dashed flow
toward the critical point, as shown in the enlarged inset. The cur-
vature of the dashed line is not meant to suggest any deeper knowl-
edge about its properties; however, close to the isotropic (unstable)
fixed point it follows the direction of irrelevant longitudinal
anisotropies.

there is a value K., where a phase transition similar to the
K+ =K case occurs. In fact, in the presence of particle-hole
symmetry a phase transition must occur (see the discussion
in Ref. 14, p. 9530). Furthermore, the same line of arguments
as used in Ref. 44 to solve the TIKM can be applied in this
case (note, however, that there it was supplemented by nRG
and BCFT results). Since there is no other energy scale in the
system, we expect that there is no additional phase transition
away from K+ =0. As illustrated in Fig. 4, this suggests that
the irrelevant flow to the isotropic fixed point originates from
an unstable fixed point at |K| — o which separates the singlet
RKKY and Kondo-screened phases.

V. ENTANGLEMENT OF TWO RKKY-COUPLED SPINS IN
THE PRESENCE OF SPIN-ORBIT INTERACTIONS

Having explored how spin-orbit interactions influence the
critical behavior of the TIKM, we now shift focus and turn to
the question how these same spin-orbit interactions affect the
entanglement between the two localized spins deep in the
RKKY regime (where the competition from the direct Kondo
interaction can be neglected). As discussed in the introduc-
tion, this is an important problem considering proposals!”-'3
for using RKKY-coupled quantum dots as entangled qubits
for quantum computing.

As a measure of entanglement we shall employ the stan-
dard concurrence of formation,” from now on simply re-
ferred to as concurrence. To obtain an expression for the
concurrence in the present case it will be helpful to have
access to the most general form of a reduced density matrix
for a two-spin system compatible with conservation of the y
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component of the total spin. We can write it in terms of six
real parameters a,, ...,dq as
p= |+ + )+ + [+ agl= = == [+ (as +iag)l+ = )}~ +|
+ bt =) = b gl + )=+ |+ (a5 fag) |-+ )+ - |
(29)
Note that only five of these parameters are independent due

to normalization. We can therefore express the density matrix
in terms of the five expectation values

31=(57S5) - (518,
D =(S§183) - (515%),
3H=-(S,-5,),

X* = () +(S). (30)

The way the parameters in Eq. (30) are defined allows for an
easy reduction to various limiting cases. For example, H
#0,/=D=X"=0 corresponds to the SU(2) case with a pure
Heisenberg interaction between the spins. Actually, in the
system we consider, the parameters X* are always zero by
symmetry, i.e., there is no spontaneous magnetization, nei-
ther uniform nor staggered. Whereas in the derivation of our
formula for the concurrence (Appendix B), we keep X* in
order to obtain a result that is valid also for more general
situations, e.g., in the presence of a magnetic field, we shall
drop X* in the following so as to lighten the notation.

We shall also find it convenient to work in the “magic
basis,” given by

ey =[++)+[--),
ey =il++)—i|--),
le) =i[+—)+il-+),

leg)=|+-)—|-+). (31)
In this basis the concurrence can be written as
C= maX{O,}\l - )\2 - )\3 - )\4}, (32)

where \; are the decreasingly ordered square roots of the
eigenvalues of Prgsic X (Pmagic)”s With ppgeic being the re-
duced density matrix in the magic basis.>> After some alge-
bra (see Appendix B for details) we end up with the follow-
ing formula for the concurrence:

C=4 max{0,H + 2I}. (33)

This implies that the concurrence can actually be expressed
in terms of a single parameter

C =max{0,&}, (34)

where

= %((sisﬁ) —(S1S) = 3(S,5)). (35)
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FIG. 5. Level splitting due to the RKKY interaction.

To calculate the concurrence of any state of the two-spin
subsystem arising from a total Hamiltonian conserving U(1)
spin symmetry] we can use formula (34) derived above.
Deep in the RKKY regime where the competition from the
Kondo interaction can be neglected (the case discussed in
Sec. II), the spins are described by a Hamiltonian of the form

C1 .
H=K"S)S} + Ee‘HKL(Si +iS7)(85-iSy) +He., (36)

which has three possible ground states: a rotated singlet state

1 . .
psinglet(a) = E(|+ - > - elg|_ + >)(<+ - | - e—16<_ + )»

(37)
an Ising ground state
1 1
pIsing=E|++><++|+5|__><__ > (38)
and a mixture of rotated triplet states
1 1 1
ptriplel(a) = gpsinglel(a) + §|+ + ><+ + | + §|_ - ><_ I
(39)

corresponding to the cases K*>-K’, K*<-K” (or |K’|
>K*+=0), and K+=-K”, respectively. This can be read off
immediately from the level scheme in Fig. 5. Note that the
states in Egs. (37) and (39) are just the conventional singlet
(#=0) and triplet states (#=) in a basis where one of the
spins has been rotated with respect to the other [cf. Eq. (20)].
The parameter £ that determines the concurrence in those
three cases is [cf. Eq. (34)]

gsinglet =+1,
Slsing = 1/3 ,
gtriplel =-1, (40)

hence the concurrence is unity for the singlet while it always
vanishes in the latter two cases (see Appendix B for details).

To understand what effects a spin-orbit interaction may
have on the entanglement in the RKKY regime, consider the
situation described by the F,, amplitude in Eq. (16), i.e., an
RKKY interaction given by

PHYSICAL REVIEW B 80, 155302 (2009)

7om? 2 m*a?
?sm 2R kp+7

T 2mPR2

It is clear from this that a change in & may change the overall
sign of the interaction and thus drive a system with a maxi-
mally entangled singlet ground state to one with a nonen-
tangled triplet ground state or vice versa. As an illustration,
one may consider a double-quantum dot structure patterned
in an InAs heterostructure, which, due to its large electron
mean-free path, is favored in most spintronics applications.*’
Using data for a heterostructure grown by molecular-beam
epitaxy,® with a gate-controlled Rashba parameter tunable in
the range 1-5X 107" eV m and with an effective mass m
~(.4m,, one finds that the inverse Rashba spin-orbit length
ma/h? varies in the interval 0.01-0.1 A~' (to be compared
to the Fermi wave number k~0.02 A~! and the distance R
between the dots, say, of the order of magnitude R ~ 10% A).
In the more general case—when the F; and F, amplitudes in
Eq. (16) come into play—it must be expected that a transi-
tion to a system with a nonentangled Ising ground state can
also occur. We conclude that spin-orbit interactions may
drastically reduce, or, enhance, the entanglement between
two-spin qubits, with the precise effect depending on mate-
rials and design parameters, as well as on the strength of
applied electrical fields. It is here important to emphasize
that estimating the value of the RKKY coupling in a real
device is no easy task. In addition to the uncertainty in de-
termining the distance between the two-spin qubits, there are
difficulties in judging the influence from the mean-free path,
dephasing length, etc. An exquisitely precise control of the
experimental setup is a sine qua non for a reliable estimate of
the RKKY coupling on which entanglement depends so cru-
cially.

MNER Y (41)

VI. ENTANGLEMENT AT CRITICALITY

Using the formalism developed in the previous section
(see Appendix B for details) and exploiting the results of
Sec. IV we find [cf. Eq. (35)]

5critica1 =0, (42)

i.e., the concurrence vanishes at the critical point K*=K"
~2.2Tg as in the SU(2) symmetric case with no spin-orbit
interaction.”* It should be noted that in the cases of a vanish-
ing concurrence in the noncritical RKKY regime, i.e., for the
Ising doublet and the triplet states (discussed in Sec. IV), the
value of £ was always a finite and negative number, and the
concurrence vanished by virtue of taking the maximum of
zero and this number. In the case of the critical ground state,
£ is by itself zero, which means that a small deviation from
the critical point could lead to a nonzero value for the con-
currence. In other words, the point where the concurrence
first vanishes marks the critical point. Here a stronger anti-
ferromagnetic coupling drives the system to the free fixed
point where the spins form a fully entangled singlet while a
weaker antiferromagnetic or even ferromagnetic coupling
drives the system to the fully screened two-channel Kondo
fixed point where there is no entanglement between the
spins.
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It is important to keep in mind that the BCFT result in
Ref. 14 about the irrelevance of anisotropies is only valid for
small deviations around the isotropic case. In the device
which we suggest (cf. Fig. 3), we have shown that the aniso-
tropy in the xz plane can be arbitrarily large, i.e., the phase of
K does not change the picture. For large anisotropies along
the y axis this will be quite different. We are not able to
describe the exact behavior in the entire parameter plane
spanned by K* and K’ but for certain regions there are
strong arguments that the system should behave in a certain
way. Let us first consider the case |K”|<K*. For very large
values of K+ the impurity spins will form a singlet and the
conduction electrons are decoupled, just as for K*=~K*
> Tx. For K—0 (and |K*| <K*') the system will flow to the
two-channel Kondo fixed point, again just like in the isotro-
pic case. In fact, the same line of arguments used in Ref. 44
can be applied. The impurity state at the critical point should
be the same, in particular, also having vanishing concur-
rence. We expect that this fixed point can be connected to the
isotropic fixed point by tuning both K* and K- appropriately
and extended for larger values of K->-K">0. For |K’|
>K+, Ky| > Ty we are in the RKKY regime where the im-
purity spins are completely decoupled from the conduction
electrons. We thus know that K*<<0 gives vanishing concur-
rence while for K”>0 a nonzero value of K raises the con-
currence from O to 1. There is, however, an intermediate
region K¥~Tg, K*=0 where a different quantum phase
transition is expected to take place.*® An analysis of the
crossover to this quantum critical point, or of the entangle-
ment properties in its vicinity, is beyond the scope of this

paper.

VII. SUMMARY

We have carried out a systematic study of how spin-orbit
interactions—of Rashba as well as of Dresselhaus type—
influence the Kondo and RKKY interactions in a nanoscale
device described by a two-dimensional two-impurity Kondo
model. By absorbing the Rashba and Dresselhaus interac-
tions as anisotropies of an effective RKKY coupling we can
monitor their effects for varying coupling strengths. This
provides us with a controlled inroute to study the quantum
critical behavior of the model in presence of spin-orbit inter-
actions, exploiting known results from boundary conformal
field theory'* and an effective bosonized Hamiltonian
approach.* Most strikingly, and as illustrated in Fig. 4, for a
particular combination of symmetry-breaking terms there is
strong evidence for a line of critical points exhibiting the
same universal behavior as that of the known isotropic model
(up to RG irrelevant scaling corrections). It remains a chal-
lenge to rigorously establish the existence of this critical line.
We have also studied how spin-orbit interactions influence
the entanglement between two RKKY-coupled spinful quan-
tum dots (alias “qubits” in the language of quantum comput-
ing). Using data for a nanoscale device patterned in a gated
InAs heterostructure we find that a gate-controlled Rashba
spin-orbit interaction may drive a maximally entangled state
to one with vanishing entanglement or vice versa (as mea-
sured by the two-qubit concurrence). This has important im-
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plications for proposals using RKKY interactions for nonlo-
cal control of qubit entanglement in semiconductor
heterostructures.
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APPENDIX A: RKKY INTERACTION FOR R=#

To derive the form of the RKKY interaction, it iS neces-
sary to perform traces over various combinations of Pauli
matrices 7, 7, and 7°. Specifically, we need the relations

Ti[(v-A)(7-B)]=2A - B,
Ti[(7-A)(7- B)7]=2i(A X B),,

Ti{(7-A)7(7- B)7]=2AB;+2A;B;— 25,A - B,
which can be easily verified using
(7-A)(7-B)=(A-B)+i(A XB)- 7. (A1)

For the case R=2%, discussed in the text after Eq. (13), the
single-electron Green’s function is

G=Gy+ G a” -G,BT". (A2)
The RKKY interaction is proportional to
Tr[(S; - DG(R)(S; - 7)G(-R)]. (A3)

Inserting G from Eq. (A2) into Eq. (A3) and using the trace
formulas given above, we obtain
Ti(S, - DG(R)(S, - IG(-R)]=2G;S, - S,
—4GyGia(S| X 8,) +4GyGiB(S| X §,)*
+2GT2(S, - S, —2558%) + 2G1 BX(S, - S, — 25583)
+4GiaB(S|S5 + S1S5). (A4)

APPENDIX B: CONCURRENCE FOR
VARIOUS STATES

The concurrence for two qubits (two-spin subsystem) can
be written as
szax{o,)\l—)\z—)\_g—)\4}, (Bl)
where \; are the decreasingly ordered square roots of the
eigenvalues of ppygic X p:ﬂagic, with p.,ic being the reduced
density matrix in the magic basis.?’ In terms of H, I, D, and
X defined in Eq. (30), it is given by
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~H' -2 -—ix* 0 0
iXt*  -H'-21 0 0
Prnagic = 0 0 AI-H' D+iX |,
1
0 0 D-iX" L +3H

(B2)

where H'=H-1/4. Since py,qic X p;agic is block diagonal it
is straightforward to calculate the eigenvalues and one finds

1 2
A ,= (Z —H—21> - (X2,

1 2
N =D?— (X7)2+ (21 -2H)? + (2[+H+ Z)

+ 2\/[(21—2H)2+D2]M21+H+ i)z— (X")ZJ.
(B3)

Note that the parameters are not fully independent; all eigen-
values are positive numbers.

To calculate the concurrence by the formula in Eq. (B1), it
is necessary to order the eigenvalues by size. Since A_ can
never be the largest eigenvalue, there are only two cases,
N;>N; and N>\, to analyze. First consider A, >\,. In
this case Eq. (32) takes the form

C=max{O,\, = \_—2\,}, (B4)

which, in particular, implies that the concurrence vanishes
for A,—N_=2\,. As for the second possibility, A{>\,, in-
spection of Eq. (B1) reveals that the concurrence vanishes
identically for this case since A;—\,=0 and A.=0. How-
ever, A\,—A_=\,=\; =2\, thus the concurrence also van-
ishes by Eq. (B4). It follows that the second case is already
contained in that formula and it is not necessary to treat the
two cases separately.

In the following we shall specialize to the case with X~
=0 (cf. Sec. V) in which case the \; simplify to

1
)\1:——H—21,
4
1
e =\D>+ (2I-2H)* + 2I+H+Z‘, (BS)

and we immediately end up with Eq. (34), i.e.,

1 1
C:max{o, 4I+2H+5‘ —5+2H+41}

=4 max{0,H + 2I} = max{0,&}. (B6)

To calculate the concurrence for a given reduced density ma-
trix in the magic basis, as parameterized in Eq. (B2), we need
to calculate the expectation value &£ as defined in Eq. (35).
The corresponding operator takes the following form in the
magic basis:

PHYSICAL REVIEW B 80, 155302 (2009)

Og=

WA

1
(S1S3) = (515D = 3(8183)) = S diag(~ 1,-5,3,3).
(B7)

Deep in the RKKY regime there are only three possible
states for the two coupled qubits: a singlet, an Ising doublet,
and a triplet. Starting with the singlet state, [Eq. (37)], its
density matrix in the magic basis is given by

. ,0 1
sin“— —sin @
. 00 2 2
psinglel(a) =d1ag 00 , | . 2 (BS)
—sin 6 cos“—
2 2
and & is determined as
. ,0 3.
| 3 sin“— Esm 0
gsinglel( 0) = Tr[ofpsinglet( 0)] = ng’ )
=sin 6 3 cos’=
2 2
=1. (B9)

This means that the concurrence for the singlet state is unity,
independent of 6. In other words, the well-known fact that a
singlet state is maximally entangled is immediately repro-
duced in our formalism. The Ising doublet, [Eq. (38)], has
the density matrix

Prsing = diag(1/2,1/2,0,0). (B10)
By inspection 5=%><—§=—1, thus the concurrence is zero
for this case. As for the triplet state, Eq. (39), the parameters
for pyipie(#) can easily be obtained from the ones for

Psingier( 0) and pyg;,,, since these density matrices as well as the
spin operators are block diagonal. One finds

1 2
gtriplet( 0) = ggsinglet( 0) + 5glsing == 5

and the concurrence is again seen to vanish identically.

Turning to the critical ground state of the TIKM, its re-
duced density matrix for the two qubits is given by Eq.
(B11), with a nonzero value of § when spin-orbit interactions
are present,

10 0 0
01 0 0
1 L0 .
Pariica(€) = 7 0 0 2sin*> sin 0 (B11)

0
sin @ 2 cos’—
2

From this we find that &_;;.,1=0, i.e., the concurrence van-
ishes at the critical point.
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APPENDIX C: 2D KONDO MODEL IN THE PRESENCE
OF RASHBA OR DRESSELHAUS INTERACTION

The Hamiltonian for Rashba and Dresselhaus spin-orbit
interactions in two dimensions, which we take as the x-y
plane, is [see Egs. (5) and (6)]

Hs—o = (IBkX - a'ky)'rx - (Bky - akx) . (Cl)

We can define raising and lowering operators for spin and
angular momentum as

=+ ik,, (C2)
to rewrite the Hamiltonian as

H ,=a7 L™+ B7L"+H.c. (C3)

This expression suggests to write the free fermion fields
in terms of an angular momentum quantum number m and
the magnitude k of the momentum as3!

k 2
Yam=\ 7 J dBe™ "%y, . (C4)
277 0

The second-quantized spin-orbit Hamiltonian can then be ex-
pressed as

Hs—():fdk 2 kz(a Z$1+1(T+)g,wk,m,a’

m,o,0’

—iBYT () Ymer) + Hee. (C5)

It follows that the 2D Hamiltonian for the Kondo model with
added Rashba and Dresselhaus spin-orbit interactions takes
the form

H = Hy, + Hyondo + Hyos (C6)

where

Hygn = f dk 2 ke im.o-

o=1,1

r i1 to _o'
Hyongo=J | dk | dk'NKK' 2 9575 o 0.0+ S,

o,0'=1,]

(C7)

and where H is given in Eq. (C5).

As manifest in Eq. (C5), when both kinds of spin-orbit
interactions are present, all m-states couple to the impurity.
On the other hand, if only one type of spin-orbit interaction
is present, there are just two states coupling to the impurity.
To diagonalize the spin-orbit Hamiltonian in this case, we
define new fields as

1 .
—12
Wemy == TE(lﬁk,T,m + i1 Y| mn) s
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1 .
B, |~ = TE(‘//k,J,,m * elﬂ(n_l)/zl;bk,T,m—n)’ (C8)
Y

where n=1 in the Rashba case (8=0) and n=-1 in the
Dresselhaus case (@=0) and where the T, ]| labels on the new
fields refer to the “pseudospin” & introduced in Fig. 4.

In terms of these fields, the three terms of the Hamiltonian
in Eq. (C6) are given by

Hyin = f dk, >, fklﬁz;,fwk,m,&,f,

m =1l

f==

J N v o
HKOHdO = Ef dkf dk \”kk E lllk,O,fTE- l,bk/’(],&”f/ : S,
a.0'=1.1

fi'==

Ho,=pn J dkk>, 2 f ‘ﬂzfn,f‘ﬂk,m,&,f, (C9)

m =1

f==

where pw=« if the spin-orbit interaction is of the Rashba type
and u=g if it is of the Dresselhaus type. Since all terms are
diagonal in m and only the m=0 fields take part in the Kondo
interaction, we drop all other fields and suppress the m quan-
tum number which is always zero from here on. Defining
€, = €.+ pk, we combine H;, and Hq, to

Hyy = f dk 2 Eltlﬂz?‘ﬁk,&,ﬁ (C10)
o=1,1
f==
As a last step we define a set of fields as
k /
Jdk 55(E - €)W ay
Yers= > (C11)

J dk' S(E - €],)

to obtain the Hamiltonian

H= 2 f dEEY 1.5
a.a'=1,]
fif'==
+% f dE f dE' 3 FTEEV L g S,
a,0'=1,]
fif'==
(C12)

where

Jf’f'(E,E’)zjf dka(E—e{)J dk' S(E' - €). (C13)
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